Polynomial entropies for Bott integrable Hamiltonian systems

In this paper, we study the entropy of a Hamiltonian flow in restriction to an energy level where it admits a first integral which is nondegenerate in the sense of Bott. It is easy to see that for such a flow, the topological entropy vanishes. We focus on the polynomial and the weak polynomial entro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2014-05, Vol.19 (3), p.374-414
Hauptverfasser: Labrousse, Clémence, Marco, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the entropy of a Hamiltonian flow in restriction to an energy level where it admits a first integral which is nondegenerate in the sense of Bott. It is easy to see that for such a flow, the topological entropy vanishes. We focus on the polynomial and the weak polynomial entropies h pol and h pol * . We show that, under natural conditions on the critical levels of the Bott first integral and on the Hamiltonian function H , h pol * ∈ {0, 1} and h pol ∈ {0, 1, 2}. To prove this result, our main tool is a semi-global desingularization of the Hamiltonian system in the neighborhood of a polycycle.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354714030083