Polynomial entropies for Bott integrable Hamiltonian systems
In this paper, we study the entropy of a Hamiltonian flow in restriction to an energy level where it admits a first integral which is nondegenerate in the sense of Bott. It is easy to see that for such a flow, the topological entropy vanishes. We focus on the polynomial and the weak polynomial entro...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2014-05, Vol.19 (3), p.374-414 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the entropy of a Hamiltonian flow in restriction to an energy level where it admits a first integral which is nondegenerate in the sense of Bott. It is easy to see that for such a flow, the topological entropy vanishes. We focus on the
polynomial
and the
weak
polynomial entropies
h
pol
and h
pol
*
. We show that, under natural conditions on the critical levels of the Bott first integral and on the Hamiltonian function
H
, h
pol
*
∈
{0, 1} and h
pol
∈
{0, 1, 2}. To prove this result, our main tool is a semi-global desingularization of the Hamiltonian system in the neighborhood of a polycycle. |
---|---|
ISSN: | 1560-3547 1560-3547 1468-4845 |
DOI: | 10.1134/S1560354714030083 |