Polynomial entropies and integrable Hamiltonian systems

We introduce two numerical conjugacy invariants of dynamical systems — the polynomial entropy and the weak polynomial entropy — which are well-suited for the study of “completely integrable” Hamiltonian systems. These invariants describe the polynomial growth rate of the number of balls (for the usu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2013-11, Vol.18 (6), p.623-655
1. Verfasser: Marco, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce two numerical conjugacy invariants of dynamical systems — the polynomial entropy and the weak polynomial entropy — which are well-suited for the study of “completely integrable” Hamiltonian systems. These invariants describe the polynomial growth rate of the number of balls (for the usual “dynamical” distances) of covers of the ambient space. We give explicit examples of computation of these polynomial entropies for generic Hamiltonian systems on surfaces.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354713060051