Polynomial entropies and integrable Hamiltonian systems
We introduce two numerical conjugacy invariants of dynamical systems — the polynomial entropy and the weak polynomial entropy — which are well-suited for the study of “completely integrable” Hamiltonian systems. These invariants describe the polynomial growth rate of the number of balls (for the usu...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2013-11, Vol.18 (6), p.623-655 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce two numerical conjugacy invariants of dynamical systems — the polynomial entropy and the weak polynomial entropy — which are well-suited for the study of “completely integrable” Hamiltonian systems. These invariants describe the polynomial growth rate of the number of balls (for the usual “dynamical” distances) of covers of the ambient space. We give explicit examples of computation of these polynomial entropies for generic Hamiltonian systems on surfaces. |
---|---|
ISSN: | 1560-3547 1560-3547 1468-4845 |
DOI: | 10.1134/S1560354713060051 |