On the stability problem of stationary solutions for the euler equation on a 2-dimensional torus
We study the linear stability problem of the stationary solution ψ * = −cos y for the Euler equation on a 2-dimensional flat torus of sides 2 πL and 2 π . We show that ψ * is stable if L ∈ (0, 1) and that exponentially unstable modes occur in a right neighborhood of L = n for any integer n . As a co...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2010-12, Vol.15 (6), p.637-645 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the linear stability problem of the stationary solution
ψ
* = −cos
y
for the Euler equation on a 2-dimensional flat torus of sides 2
πL
and 2
π
. We show that
ψ
* is stable if
L
∈ (0, 1) and that exponentially unstable modes occur in a right neighborhood of
L
=
n
for any integer
n
. As a corollary, we gain exponentially instability for any
L
large enough and an unbounded growth of the number of unstable modes as
L
diverges. |
---|---|
ISSN: | 1560-3547 1560-3547 1468-4845 |
DOI: | 10.1134/S1560354710510143 |