On the stability problem of stationary solutions for the euler equation on a 2-dimensional torus

We study the linear stability problem of the stationary solution ψ * = −cos y for the Euler equation on a 2-dimensional flat torus of sides 2 πL and 2 π . We show that ψ * is stable if L ∈ (0, 1) and that exponentially unstable modes occur in a right neighborhood of L = n for any integer n . As a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2010-12, Vol.15 (6), p.637-645
Hauptverfasser: Buttà, P., Negrini, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the linear stability problem of the stationary solution ψ * = −cos y for the Euler equation on a 2-dimensional flat torus of sides 2 πL and 2 π . We show that ψ * is stable if L ∈ (0, 1) and that exponentially unstable modes occur in a right neighborhood of L = n for any integer n . As a corollary, we gain exponentially instability for any L large enough and an unbounded growth of the number of unstable modes as L diverges.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354710510143