Spectra of three-dimensional cruciform and lattice quantum waveguides

It is shown that the discrete spectrum of the Dirichlet problem for the Laplacian on the union of two mutually perpendicular circular cylinders consists of a single eigenvalue, while the homogeneous problem with a threshold value of the spectral parameter has no bounded solutions. As a consequence,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2015-07, Vol.92 (1), p.514-518
Hauptverfasser: Bakharev, F. L., Matveenko, S. G., Nazarov, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that the discrete spectrum of the Dirichlet problem for the Laplacian on the union of two mutually perpendicular circular cylinders consists of a single eigenvalue, while the homogeneous problem with a threshold value of the spectral parameter has no bounded solutions. As a consequence, an adequate one-dimensional model of a square lattice of thin quantum waveguides is presented and the asymptotic behavior of the spectral bands and lacunas (zones of wave transmission and deceleration) and the oscillatory processes they generate is described.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562415040274