Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm

For a given matrix, considered is the rank- r skeleton approximation which uses r columns and r rows of the given matrix. It is demonstrated that if the minor residing on the intersection of the chosen columns and rows has the maximal modulus among all minors of order r , the considered approximatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2011-06, Vol.83 (3), p.374-375
Hauptverfasser: Goreinov, S. A., Tyrtyshnikov, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given matrix, considered is the rank- r skeleton approximation which uses r columns and r rows of the given matrix. It is demonstrated that if the minor residing on the intersection of the chosen columns and rows has the maximal modulus among all minors of order r , the considered approximation is quasioptimal in Chebyshev norm.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562411030355