Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm
For a given matrix, considered is the rank- r skeleton approximation which uses r columns and r rows of the given matrix. It is demonstrated that if the minor residing on the intersection of the chosen columns and rows has the maximal modulus among all minors of order r , the considered approximatio...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2011-06, Vol.83 (3), p.374-375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given matrix, considered is the rank-
r
skeleton approximation which uses
r
columns and
r
rows of the given matrix. It is demonstrated that if the minor residing on the intersection of the chosen columns and rows has the maximal modulus among all minors of order
r
, the considered approximation is quasioptimal in Chebyshev norm. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562411030355 |