On the periodically evolving orbits in the singly averaged Hill problem

We continue to analyze the periodic solutions of the singly averaged Hill problem. We have numerically constructed the families of solutions that correspond to periodically evolving satellite orbits for arbitrary initial values of their eccentricities and inclinations to the plane of motion of the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy letters 2008-04, Vol.34 (4), p.280-288
Hauptverfasser: Vashkov’yak, M. A., Teslenko, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We continue to analyze the periodic solutions of the singly averaged Hill problem. We have numerically constructed the families of solutions that correspond to periodically evolving satellite orbits for arbitrary initial values of their eccentricities and inclinations to the plane of motion of the perturbing body. The solutions obtained are compared with the numerical solutions of the rigorous (nonaveraged) equations of the restricted circular three-body problem. In particular, we have constructed a periodically evolving orbit for which the well-known Lidov-Kozai mechanism manifests itself, just as in the doubly averaged problem.
ISSN:1063-7737
1562-6873
DOI:10.1134/S1063773708040087