On the periodically evolving orbits in the singly averaged Hill problem
We continue to analyze the periodic solutions of the singly averaged Hill problem. We have numerically constructed the families of solutions that correspond to periodically evolving satellite orbits for arbitrary initial values of their eccentricities and inclinations to the plane of motion of the p...
Gespeichert in:
Veröffentlicht in: | Astronomy letters 2008-04, Vol.34 (4), p.280-288 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We continue to analyze the periodic solutions of the singly averaged Hill problem. We have numerically constructed the families of solutions that correspond to periodically evolving satellite orbits for arbitrary initial values of their eccentricities and inclinations to the plane of motion of the perturbing body. The solutions obtained are compared with the numerical solutions of the rigorous (nonaveraged) equations of the restricted circular three-body problem. In particular, we have constructed a periodically evolving orbit for which the well-known Lidov-Kozai mechanism manifests itself, just as in the doubly averaged problem. |
---|---|
ISSN: | 1063-7737 1562-6873 |
DOI: | 10.1134/S1063773708040087 |