On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges

We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2012-07, Vol.19 (3), p.373-384
Hauptverfasser: Rivero, A. E. Choque, Karlovich, Yu. I., Merzon, A. E., Zhevandrov, P. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 3
container_start_page 373
container_title Russian journal of mathematical physics
container_volume 19
creator Rivero, A. E. Choque
Karlovich, Yu. I.
Merzon, A. E.
Zhevandrov, P. N.
description We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.
doi_str_mv 10.1134/S1061920812030090
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1061920812030090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1061920812030090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vMHrz00yylOJPodCF3Y-Z5KZOaTMlSSu-vVMrbgRX9_AdzuVwCLllcMeYkPevDBQzHDTjIAAMnJERm0wmlVJCnw96sKujf0mucl4DKNAgR-RtEWl5R-r6eMC0wuiQ9uEb2e1u05W9_wW-CyFZV9DT2MdcbOn6aNMn_bAHpF2k2dlSMHVxRduBol9hviYXwW4y3vzcMVk-PS6nL9V88TybPswrx7UuVe0cKGGt0m2wAY0RVgYJdcsNa1vDnEBTa6k9D5YplFh7BZJx33qpwIkxYae3LvU5JwzNLnXboVzDoDku1PxZaMjwUybvjp0xNet-n-LQ8p_QFySIaXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</title><source>SpringerNature Journals</source><creator>Rivero, A. E. Choque ; Karlovich, Yu. I. ; Merzon, A. E. ; Zhevandrov, P. N.</creator><creatorcontrib>Rivero, A. E. Choque ; Karlovich, Yu. I. ; Merzon, A. E. ; Zhevandrov, P. N.</creatorcontrib><description>We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920812030090</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Russian journal of mathematical physics, 2012-07, Vol.19 (3), p.373-384</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</citedby><cites>FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920812030090$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920812030090$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rivero, A. E. Choque</creatorcontrib><creatorcontrib>Karlovich, Yu. I.</creatorcontrib><creatorcontrib>Merzon, A. E.</creatorcontrib><creatorcontrib>Zhevandrov, P. N.</creatorcontrib><title>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><description>We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.</description><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vMHrz00yylOJPodCF3Y-Z5KZOaTMlSSu-vVMrbgRX9_AdzuVwCLllcMeYkPevDBQzHDTjIAAMnJERm0wmlVJCnw96sKujf0mucl4DKNAgR-RtEWl5R-r6eMC0wuiQ9uEb2e1u05W9_wW-CyFZV9DT2MdcbOn6aNMn_bAHpF2k2dlSMHVxRduBol9hviYXwW4y3vzcMVk-PS6nL9V88TybPswrx7UuVe0cKGGt0m2wAY0RVgYJdcsNa1vDnEBTa6k9D5YplFh7BZJx33qpwIkxYae3LvU5JwzNLnXboVzDoDku1PxZaMjwUybvjp0xNet-n-LQ8p_QFySIaXE</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Rivero, A. E. Choque</creator><creator>Karlovich, Yu. I.</creator><creator>Merzon, A. E.</creator><creator>Zhevandrov, P. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</title><author>Rivero, A. E. Choque ; Karlovich, Yu. I. ; Merzon, A. E. ; Zhevandrov, P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivero, A. E. Choque</creatorcontrib><creatorcontrib>Karlovich, Yu. I.</creatorcontrib><creatorcontrib>Merzon, A. E.</creatorcontrib><creatorcontrib>Zhevandrov, P. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivero, A. E. Choque</au><au>Karlovich, Yu. I.</au><au>Merzon, A. E.</au><au>Zhevandrov, P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>19</volume><issue>3</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1061920812030090</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9208
ispartof Russian journal of mathematical physics, 2012-07, Vol.19 (3), p.373-384
issn 1061-9208
1555-6638
language eng
recordid cdi_crossref_primary_10_1134_S1061920812030090
source SpringerNature Journals
subjects Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
title On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20convergence%20of%20the%20amplitude%20of%20the%20diffracted%20nonstationary%20wave%20in%20scattering%20by%20wedges&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Rivero,%20A.%20E.%20Choque&rft.date=2012-07-01&rft.volume=19&rft.issue=3&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920812030090&rft_dat=%3Ccrossref_sprin%3E10_1134_S1061920812030090%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true