On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges
We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the...
Gespeichert in:
Veröffentlicht in: | Russian journal of mathematical physics 2012-07, Vol.19 (3), p.373-384 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | Russian journal of mathematical physics |
container_volume | 19 |
creator | Rivero, A. E. Choque Karlovich, Yu. I. Merzon, A. E. Zhevandrov, P. N. |
description | We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the
limiting amplitude
of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered. |
doi_str_mv | 10.1134/S1061920812030090 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1061920812030090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1061920812030090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vMHrz00yylOJPodCF3Y-Z5KZOaTMlSSu-vVMrbgRX9_AdzuVwCLllcMeYkPevDBQzHDTjIAAMnJERm0wmlVJCnw96sKujf0mucl4DKNAgR-RtEWl5R-r6eMC0wuiQ9uEb2e1u05W9_wW-CyFZV9DT2MdcbOn6aNMn_bAHpF2k2dlSMHVxRduBol9hviYXwW4y3vzcMVk-PS6nL9V88TybPswrx7UuVe0cKGGt0m2wAY0RVgYJdcsNa1vDnEBTa6k9D5YplFh7BZJx33qpwIkxYae3LvU5JwzNLnXboVzDoDku1PxZaMjwUybvjp0xNet-n-LQ8p_QFySIaXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</title><source>SpringerNature Journals</source><creator>Rivero, A. E. Choque ; Karlovich, Yu. I. ; Merzon, A. E. ; Zhevandrov, P. N.</creator><creatorcontrib>Rivero, A. E. Choque ; Karlovich, Yu. I. ; Merzon, A. E. ; Zhevandrov, P. N.</creatorcontrib><description>We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the
limiting amplitude
of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920812030090</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Russian journal of mathematical physics, 2012-07, Vol.19 (3), p.373-384</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</citedby><cites>FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920812030090$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920812030090$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rivero, A. E. Choque</creatorcontrib><creatorcontrib>Karlovich, Yu. I.</creatorcontrib><creatorcontrib>Merzon, A. E.</creatorcontrib><creatorcontrib>Zhevandrov, P. N.</creatorcontrib><title>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><description>We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the
limiting amplitude
of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.</description><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vMHrz00yylOJPodCF3Y-Z5KZOaTMlSSu-vVMrbgRX9_AdzuVwCLllcMeYkPevDBQzHDTjIAAMnJERm0wmlVJCnw96sKujf0mucl4DKNAgR-RtEWl5R-r6eMC0wuiQ9uEb2e1u05W9_wW-CyFZV9DT2MdcbOn6aNMn_bAHpF2k2dlSMHVxRduBol9hviYXwW4y3vzcMVk-PS6nL9V88TybPswrx7UuVe0cKGGt0m2wAY0RVgYJdcsNa1vDnEBTa6k9D5YplFh7BZJx33qpwIkxYae3LvU5JwzNLnXboVzDoDku1PxZaMjwUybvjp0xNet-n-LQ8p_QFySIaXE</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Rivero, A. E. Choque</creator><creator>Karlovich, Yu. I.</creator><creator>Merzon, A. E.</creator><creator>Zhevandrov, P. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</title><author>Rivero, A. E. Choque ; Karlovich, Yu. I. ; Merzon, A. E. ; Zhevandrov, P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7cc063aa68bfafe993a4f407b291bb91c3e97848d2fa16e4e7d60412dbd460c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivero, A. E. Choque</creatorcontrib><creatorcontrib>Karlovich, Yu. I.</creatorcontrib><creatorcontrib>Merzon, A. E.</creatorcontrib><creatorcontrib>Zhevandrov, P. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivero, A. E. Choque</au><au>Karlovich, Yu. I.</au><au>Merzon, A. E.</au><au>Zhevandrov, P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>19</volume><issue>3</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the
limiting amplitude
of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1061920812030090</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-9208 |
ispartof | Russian journal of mathematical physics, 2012-07, Vol.19 (3), p.373-384 |
issn | 1061-9208 1555-6638 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1061920812030090 |
source | SpringerNature Journals |
subjects | Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20convergence%20of%20the%20amplitude%20of%20the%20diffracted%20nonstationary%20wave%20in%20scattering%20by%20wedges&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Rivero,%20A.%20E.%20Choque&rft.date=2012-07-01&rft.volume=19&rft.issue=3&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920812030090&rft_dat=%3Ccrossref_sprin%3E10_1134_S1061920812030090%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |