On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges

We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2012-07, Vol.19 (3), p.373-384
Hauptverfasser: Rivero, A. E. Choque, Karlovich, Yu. I., Merzon, A. E., Zhevandrov, P. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered.
ISSN:1061-9208
1555-6638
DOI:10.1134/S1061920812030090