On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges
We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the limiting amplitude of the...
Gespeichert in:
Veröffentlicht in: | Russian journal of mathematical physics 2012-07, Vol.19 (3), p.373-384 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We make more precise the Limiting Amplitude Principle in the two-dimensional scattering of an incident plane harmonic wave by a wedge. We find the long-time asymptotic regime of convergence of the amplitude of the cylindrical wave diffracted by the vertex of a wedge to the
limiting amplitude
of the solution to the corresponding stationary problem. The asymptotics turns out to be uniform on compacta and depends on the magnitude of the wedge and the profile of the incident wave. The cases of Dirichlet-Dirichlet and Dirichlet-Neumann boundary conditions are considered. |
---|---|
ISSN: | 1061-9208 1555-6638 |
DOI: | 10.1134/S1061920812030090 |