Star product geometries

We consider noncommutative geometries obtained from a triangular Drinfeld twist. This allows us to construct and study a wide class of noncommutative manifolds and their deformed Lie algebras of infinitesimal diffeomorphisms. Principles of symmetry can be implemented in this way. Two examples are co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2009-09, Vol.16 (3), p.371-383
1. Verfasser: Aschieri, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider noncommutative geometries obtained from a triangular Drinfeld twist. This allows us to construct and study a wide class of noncommutative manifolds and their deformed Lie algebras of infinitesimal diffeomorphisms. Principles of symmetry can be implemented in this way. Two examples are considered: (a) the general covariance in noncommutative spacetime, which leads to a noncommutative theory of gravity, and b) symplectomorphims of the algebra of observables associated with noncommutative configuration spaces, which leads to a geometric formulation of quantization on noncommutative spacetime (i.e., we establish a noncommutative correspondence principle from ⋆-Poisson brackets to ⋆-commutators).
ISSN:1061-9208
1555-6638
DOI:10.1134/S1061920809030054