Star product geometries
We consider noncommutative geometries obtained from a triangular Drinfeld twist. This allows us to construct and study a wide class of noncommutative manifolds and their deformed Lie algebras of infinitesimal diffeomorphisms. Principles of symmetry can be implemented in this way. Two examples are co...
Gespeichert in:
Veröffentlicht in: | Russian journal of mathematical physics 2009-09, Vol.16 (3), p.371-383 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider noncommutative geometries obtained from a triangular Drinfeld twist. This allows us to construct and study a wide class of noncommutative manifolds and their deformed Lie algebras of infinitesimal diffeomorphisms. Principles of symmetry can be implemented in this way. Two examples are considered: (a) the general covariance in noncommutative spacetime, which leads to a noncommutative theory of gravity, and b) symplectomorphims of the algebra of observables associated with noncommutative configuration spaces, which leads to a geometric formulation of quantization on noncommutative spacetime (i.e., we establish a noncommutative correspondence principle from ⋆-Poisson brackets to ⋆-commutators). |
---|---|
ISSN: | 1061-9208 1555-6638 |
DOI: | 10.1134/S1061920809030054 |