Quantum-hydrodynamic approach to the problem of electron exchange between atomic particles and nanosystems
The application of quantum-hydrodynamic methods for solving the problem of electron exchange between atomic particles and solid surfaces, and nanosystems has been examined. The derivation of a system of equations that is alternative to the nonstationary Schrödinger equation is given to describe the...
Gespeichert in:
Veröffentlicht in: | Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2011-12, Vol.5 (6), p.1126-1129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of quantum-hydrodynamic methods for solving the problem of electron exchange between atomic particles and solid surfaces, and nanosystems has been examined. The derivation of a system of equations that is alternative to the nonstationary Schrödinger equation is given to describe the dynamics of electronic processes with variable charge and current densities. A comparison of results of solving the nonstationary Schrödinger equation and the quantum-hydrodynamic system of equations shows that both approaches give a good coincidence. The numerical solution to the system of quantum-hydrodynamic equations has a number of advantages, because it does not lead to oscillations at the boundary of the computational mesh and nor to the problem of exponential growth in numerical complexity for many-electron systems. |
---|---|
ISSN: | 1027-4510 1819-7094 |
DOI: | 10.1134/S1027451011110073 |