Polymer-Clay Nanocomposites: Exfoliation and Intercalation of Organophilic Montmorillonite Nanofillers in Styrene–Limonene Copolymer

Nanocomposites from Styrene-Limonene copolymers and Algerian organophilic-clay named Maghnite-CTA + (Mag-CTA + ), were prepared by in-situ polymerization using different amounts (2, 5, and 10% by weight) of clay and Azobisisobutyronitrile (AIBN) as a catalyst. The Mag-CTA + is an organophilic silica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer science. Series A, Chemistry, physics Chemistry, physics, 2021-09, Vol.63 (5), p.568-575
Hauptverfasser: Hodhaifa Derdar, Meghabar, Rachid, Benachour, Mohamed, Mitchell, Geoffrey Robert, Bachari, Khaldoun, Belbachir, Mohammed, Cherifi, Zakaria, Baghdadli, Mohammed Chakib, Harrane, Amine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocomposites from Styrene-Limonene copolymers and Algerian organophilic-clay named Maghnite-CTA + (Mag-CTA + ), were prepared by in-situ polymerization using different amounts (2, 5, and 10% by weight) of clay and Azobisisobutyronitrile (AIBN) as a catalyst. The Mag-CTA + is an organophilic silicate clay prepared through a direct exchange process, using Cetyltrimethylammonuim bromide (CTAB) in which it used as green nano-filler. The preparation method of nanocomposites was studied in order to determine and improve structural, morphological and thermal properties of Sty-Lim copolymer. The structure and morphology of the obtained nanocomposites (Sty-Lim/Mag) were determined using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). The analyses confirmed the chemical modification of clay layers and the intercalation of Sty-Lim copolymer within the organophilic clay sheets. Exfoliated structure was obtained for the lower amount of clay (2 wt %), while intercalated structures were detected for higher amounts of clay (5 and 10 wt %). The thermal properties of the obtained nanocomposites were studied by thermogravimetric analysis (TGA) and show a significant improvement in the thermal stability compared with the pure copolymer. The obtained nanocomposites show an optimal degradation temperature of 320°C.
ISSN:0965-545X
1555-6107
DOI:10.1134/S0965545X21050023