Relativistic algebra of space-time and algebrodynamics

We consider a manifestly Lorentz-invariant form L of the biquaternion algebra and its generalization to the case of a curved manifold. The conditions of L-differentiability of L-functions are formulated and considered as the primary equations for fundamental fields modeled with such functions. The e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gravitation & cosmology 2016-07, Vol.22 (3), p.230-233
Hauptverfasser: Kassandrov, V. V., Rizcallah, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a manifestly Lorentz-invariant form L of the biquaternion algebra and its generalization to the case of a curved manifold. The conditions of L-differentiability of L-functions are formulated and considered as the primary equations for fundamental fields modeled with such functions. The exact form of the effective affine connection induced by L-differentiability equations is obtained for flat and curved manifolds. In the flat case, the integrability conditions of the connection lead to self-duality of the corresponding curvature, thus ensuring that the source-free Maxwell and SL (2,ℂ) Yang-Mills equations hold on the solutions of the L-differentiability equations.
ISSN:0202-2893
1995-0721
DOI:10.1134/S0202289316030087