On Operator Inclusions in Spaces with Vector-Valued Metrics

We consider an inclusion ~ y F x with a multivalued mapping acting in spaces with vector-valued metrics whose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution x X and an estimate of its deviation from a given element subscript x 0 X in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2023-12, Vol.323 (Suppl 1), p.S222-S242
1. Verfasser: Panasenko, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an inclusion ~ y F x with a multivalued mapping acting in spaces with vector-valued metrics whose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution x X and an estimate of its deviation from a given element subscript x 0 X in a vector-valued metric are obtained. This result extends the known theorems on similar operator equations and inclusions in metric spaces and in the spaces with n -dimensional metric to a more general case and, applied to particular classes of functional equations and inclusions, allows to get less restrictive, compared to known, solvability conditions as well as more precise estimates of solutions. We apply this result to the integral inclusion formulae-sequence ~ y t f t superscript subscript a b italic-κ t s x s differential-d s x t t a b where the function ~ y is measurable, the mapping f satisfies the Carathéodory conditions, and the solution x is required to be only measurable (the integrability of x is not assumed).
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543823060196