A polynomial-time approximation scheme for the Euclidean problem on a cycle cover of a graph

We study the minimum-weight k -size cycle cover problem (Min- k -SCCP) of finding a partition of a complete weighted digraph into k vertex-disjoint cycles of minimum total weight. This problem is a natural generalization of the known traveling salesman problem (TSP) and has a number of applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2015-07, Vol.289 (Suppl 1), p.111-125
Hauptverfasser: Khachai, M. Yu, Neznakhina, E. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the minimum-weight k -size cycle cover problem (Min- k -SCCP) of finding a partition of a complete weighted digraph into k vertex-disjoint cycles of minimum total weight. This problem is a natural generalization of the known traveling salesman problem (TSP) and has a number of applications in operations research and data analysis. We show that the problem is strongly NP-hard in the general case and preserves intractability even in the geometric statement. For the metric subclass of the problem, a 2-approximation algorithm is proposed. For the Euclidean Min-2-SCCP, a polynomial-time approximation scheme based on Arora’s approach is built.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543815050107