Construction of the Gelfand–Tsetlin Basis for Unitary Principal Series Representations of the Algebra sln(ℂ)
We consider infinite-dimensional unitary principal series representations of the algebra sl n ( ℂ ), implemented on the space of functions of n(n− 1 )/ 2 complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of qu...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2019, Vol.198 (1), p.145-155 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider infinite-dimensional unitary principal series representations of the algebra
sl
n
(
ℂ
), implemented on the space of functions of n(n−
1
)/
2
complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra n. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks. |
---|---|
ISSN: | 0040-5779 1573-9333 |
DOI: | 10.1134/S0040577919010100 |