Composition operators in weighted Sobolev spaces on the Carnot group

We study the properties of the mappings inducing bounded change-of-variable operators in weighted Sobolev spaces on the Carnot group. We obtain an analytical description of these mappings in terms of integrability of the weighted distortion function. In some cases we prove that the mapping inducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2015-11, Vol.56 (6), p.1042-1059
1. Verfasser: Evseev, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the properties of the mappings inducing bounded change-of-variable operators in weighted Sobolev spaces on the Carnot group. We obtain an analytical description of these mappings in terms of integrability of the weighted distortion function. In some cases we prove that the mapping inducing a bounded operator is piecewise absolutely continuous on almost all horizontal lines.
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446615060087