Composition operators in weighted Sobolev spaces on the Carnot group
We study the properties of the mappings inducing bounded change-of-variable operators in weighted Sobolev spaces on the Carnot group. We obtain an analytical description of these mappings in terms of integrability of the weighted distortion function. In some cases we prove that the mapping inducing...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2015-11, Vol.56 (6), p.1042-1059 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the properties of the mappings inducing bounded change-of-variable operators in weighted Sobolev spaces on the Carnot group. We obtain an analytical description of these mappings in terms of integrability of the weighted distortion function. In some cases we prove that the mapping inducing a bounded operator is piecewise absolutely continuous on almost all horizontal lines. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446615060087 |