On compactness of maximal operators

Using a new approach, we show that, for any ideal space X with nonempty regular part, the maximal function operator M B constructed from an arbitrary quasidensity differential basis B is not compact if considered in a pair of weighted spaces ( X w , X v ) generated by X . For special differential ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2015-07, Vol.56 (4), p.593-600
1. Verfasser: Berezhnoĭ, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a new approach, we show that, for any ideal space X with nonempty regular part, the maximal function operator M B constructed from an arbitrary quasidensity differential basis B is not compact if considered in a pair of weighted spaces ( X w , X v ) generated by X . For special differential bases that include convex quasidensity bases, we prove that M B is not compact in a pair of weighted spaces ( X w , X v ) generated by an arbitrary ideal space X . An example is given of a quasidensity differential basis such that the maximal function operator constructed from this basis is compact in ( L ∞, L ∞).
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446615040035