On compactness of maximal operators
Using a new approach, we show that, for any ideal space X with nonempty regular part, the maximal function operator M B constructed from an arbitrary quasidensity differential basis B is not compact if considered in a pair of weighted spaces ( X w , X v ) generated by X . For special differential ba...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2015-07, Vol.56 (4), p.593-600 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a new approach, we show that, for any ideal space
X
with nonempty regular part, the maximal function operator
M
B
constructed from an arbitrary quasidensity differential basis B is not compact if considered in a pair of weighted spaces (
X
w
,
X
v
) generated by
X
. For special differential bases that include convex quasidensity bases, we prove that
M
B
is not compact in a pair of weighted spaces (
X
w
,
X
v
) generated by an arbitrary ideal space
X
. An example is given of a quasidensity differential basis such that the maximal function operator constructed from this basis is compact in (
L
∞,
L
∞). |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446615040035 |