Vector parameterization of the Lorentz group transformations and polar decomposition of Mueller matrices
It is shown that the representation of the coherence matrix (the polarization density matrix) of beams of electromagnetic waves as a biquaternion corresponding to the four-vector of a pseudo-Euclidean space whose components are the intensity and the Stokes parameters provides a possibility of introd...
Gespeichert in:
Veröffentlicht in: | Optics and spectroscopy 2009-08, Vol.107 (2), p.294-298 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the representation of the coherence matrix (the polarization density matrix) of beams of electromagnetic waves as a biquaternion corresponding to the four-vector of a pseudo-Euclidean space whose components are the intensity and the Stokes parameters provides a possibility of introducing the group transformations of these quantities isomorphic to SO(3.1) group. These transformations are a subset of the set of Mueller polarization matrices which, generally speaking, form a semigroup. The reduction of the semigroup of Mueller matrices to the group of transformations opens the possibility to use the vector parameterization of SO(3.1) group for interpretation of the polar decomposition of Mueller matrices. In particular, in this approach, the elements of the Mueller matrices corresponding to phase elements and polarizers turn out to be most simply and naturally related to their eigenpolarizations. |
---|---|
ISSN: | 0030-400X 1562-6911 |
DOI: | 10.1134/S0030400X09080219 |