Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn
The Riesz potentials L a f , 0 < α < ∞, are considered in the framework of a grand Lebesgue space L a p ),θ, 1 < p < ∞, θ > 0, on Rn with grandizers a ∈ L 1 (ℝ n ), which are understood in the case α ≥ n/p in terms of distributions on test functions in the Lizorkin space. The images u...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2018-09, Vol.104 (3-4), p.454-464 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 3-4 |
container_start_page | 454 |
container_title | Mathematical Notes |
container_volume | 104 |
creator | Umarkhadzhiev, S. M. |
description | The Riesz potentials
L
a
f
, 0 < α < ∞, are considered in the framework of a grand Lebesgue space
L
a
p
),θ, 1 < p < ∞, θ > 0, on Rn with grandizers a ∈
L
1
(ℝ
n
), which are understood in the case α ≥ n/p in terms of distributions on test functions in the Lizorkin space. The images under
I
α
of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order α in this subspace. |
doi_str_mv | 10.1134/S0001434618090134 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434618090134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0001434618090134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1334-5247266b0310ed7c5e163aa77b3f459072a819afc258a11f6ea58ed3a459fc113</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFcfwFteoJppmqQ9yuquQkFx9eShpOlk7aLpkrQHPfsavpxPYsqKF8HTMP8_3zDzE3IK7AyA5-crxhjkPJdQsJJFZY8kIBRPi0LJfZJMdjr5h-QohE3sQAJLyNMlBuO77dD1jvaWDs9IV1ttcGruOwzv9K4f0A2dfgmTthidmYYD7RzVdOm1a2mFDYb1-Is6-vXx6Y7JgY0UnvzUGXlcXD3Mr9Pqdnkzv6hSA5znqchylUnZMA4MW2UEguRaK9Vwm4uSqUwXUGprMlFoACtRiwJbrqNpTfx-RmC31_g-BI-23vruVfu3Glg9pVP_SScy2Y4Jcdat0debfvQunvkP9A2sOGYO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn</title><source>SpringerLink Journals</source><creator>Umarkhadzhiev, S. M.</creator><creatorcontrib>Umarkhadzhiev, S. M.</creatorcontrib><description>The Riesz potentials
L
a
f
, 0 < α < ∞, are considered in the framework of a grand Lebesgue space
L
a
p
),θ, 1 < p < ∞, θ > 0, on Rn with grandizers a ∈
L
1
(ℝ
n
), which are understood in the case α ≥ n/p in terms of distributions on test functions in the Lizorkin space. The images under
I
α
of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order α in this subspace.</description><identifier>ISSN: 0001-4346</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434618090134</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2018-09, Vol.104 (3-4), p.454-464</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1334-5247266b0310ed7c5e163aa77b3f459072a819afc258a11f6ea58ed3a459fc113</citedby><cites>FETCH-LOGICAL-c1334-5247266b0310ed7c5e163aa77b3f459072a819afc258a11f6ea58ed3a459fc113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434618090134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434618090134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Umarkhadzhiev, S. M.</creatorcontrib><title>Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The Riesz potentials
L
a
f
, 0 < α < ∞, are considered in the framework of a grand Lebesgue space
L
a
p
),θ, 1 < p < ∞, θ > 0, on Rn with grandizers a ∈
L
1
(ℝ
n
), which are understood in the case α ≥ n/p in terms of distributions on test functions in the Lizorkin space. The images under
I
α
of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order α in this subspace.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFcfwFteoJppmqQ9yuquQkFx9eShpOlk7aLpkrQHPfsavpxPYsqKF8HTMP8_3zDzE3IK7AyA5-crxhjkPJdQsJJFZY8kIBRPi0LJfZJMdjr5h-QohE3sQAJLyNMlBuO77dD1jvaWDs9IV1ttcGruOwzv9K4f0A2dfgmTthidmYYD7RzVdOm1a2mFDYb1-Is6-vXx6Y7JgY0UnvzUGXlcXD3Mr9Pqdnkzv6hSA5znqchylUnZMA4MW2UEguRaK9Vwm4uSqUwXUGprMlFoACtRiwJbrqNpTfx-RmC31_g-BI-23vruVfu3Glg9pVP_SScy2Y4Jcdat0debfvQunvkP9A2sOGYO</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Umarkhadzhiev, S. M.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201809</creationdate><title>Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn</title><author>Umarkhadzhiev, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1334-5247266b0310ed7c5e163aa77b3f459072a819afc258a11f6ea58ed3a459fc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umarkhadzhiev, S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umarkhadzhiev, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2018-09</date><risdate>2018</risdate><volume>104</volume><issue>3-4</issue><spage>454</spage><epage>464</epage><pages>454-464</pages><issn>0001-4346</issn><eissn>1573-8876</eissn><abstract>The Riesz potentials
L
a
f
, 0 < α < ∞, are considered in the framework of a grand Lebesgue space
L
a
p
),θ, 1 < p < ∞, θ > 0, on Rn with grandizers a ∈
L
1
(ℝ
n
), which are understood in the case α ≥ n/p in terms of distributions on test functions in the Lizorkin space. The images under
I
α
of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order α in this subspace.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434618090134</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2018-09, Vol.104 (3-4), p.454-464 |
issn | 0001-4346 1573-8876 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0001434618090134 |
source | SpringerLink Journals |
subjects | Mathematics Mathematics and Statistics |
title | Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20of%20the%20Space%20of%20Riesz%20Potentials%20of%20Functions%20in%20a%20Grand%20Lebesgue%20Space%20on%20%E2%84%9Dn&rft.jtitle=Mathematical%20Notes&rft.au=Umarkhadzhiev,%20S.%20M.&rft.date=2018-09&rft.volume=104&rft.issue=3-4&rft.spage=454&rft.epage=464&rft.pages=454-464&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434618090134&rft_dat=%3Ccrossref_sprin%3E10_1134_S0001434618090134%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |