Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn
The Riesz potentials L a f , 0 < α < ∞, are considered in the framework of a grand Lebesgue space L a p ),θ, 1 < p < ∞, θ > 0, on Rn with grandizers a ∈ L 1 (ℝ n ), which are understood in the case α ≥ n/p in terms of distributions on test functions in the Lizorkin space. The images u...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2018-09, Vol.104 (3-4), p.454-464 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Riesz potentials
L
a
f
, 0 < α < ∞, are considered in the framework of a grand Lebesgue space
L
a
p
),θ, 1 < p < ∞, θ > 0, on Rn with grandizers a ∈
L
1
(ℝ
n
), which are understood in the case α ≥ n/p in terms of distributions on test functions in the Lizorkin space. The images under
I
α
of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order α in this subspace. |
---|---|
ISSN: | 0001-4346 1573-8876 |
DOI: | 10.1134/S0001434618090134 |