On the method of two-sided continuation of solutions of the integral convolution equation on a finite Interval

The paper is devoted to the development of the method of two-sided continuation of the solution of the integral convolution equation with an even kernel function K ∈ L 1 (− r, r ). Two continuations of the solution S are considered: to (−∞, 0] and to [ r ,∞). A Wiener–Hopf-type factorization is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2015-03, Vol.97 (3-4), p.309-320
1. Verfasser: Barseghyan, A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is devoted to the development of the method of two-sided continuation of the solution of the integral convolution equation with an even kernel function K ∈ L 1 (− r, r ). Two continuations of the solution S are considered: to (−∞, 0] and to [ r ,∞). A Wiener–Hopf-type factorization is used. Under invertibility conditions for some operators, the problem can be reduced to two equations with sum kernels: Applied aspects of the realization of the method are discussed.
ISSN:0001-4346
1573-8876
DOI:10.1134/S0001434615030013