Upper-plate response to ridge subduction and oceanic plateau accretion, Washington Cascades and surrounding region; implications for plate tectonic evolution of the Pacific Northwest (USA and southwestern Canada) in the Paleogene

The interaction between subduction zones and oceanic spreading centers is a common tectonic process, and yet our understanding of how it is manifested in the geologic record is limited to a few well-constrained modern and ancient examples. In the Paleogene, at least one oceanic spreading center inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geosphere (Boulder, Colo.) Colo.), 2023-08, Vol.19 (4), p.1157-1179
Hauptverfasser: Miller, Robert B, Umhoefer, Paul J, Eddy, Michael P, Tepper, Jeffrey H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between subduction zones and oceanic spreading centers is a common tectonic process, and yet our understanding of how it is manifested in the geologic record is limited to a few well-constrained modern and ancient examples. In the Paleogene, at least one oceanic spreading center interacted with the northwestern margin of North America. Several lines of evidence place this triple junction near Washington (USA) and southern British Columbia (Canada) in the early to middle Eocene, and we summarize a variety of new data sets that permit us to track the plate tectonic setting and geologic evolution of this region from 65 to 40 Ma. The North Cascades segment of the voluminous Coast Mountains continental magmatic arc experienced a magmatic lull between ca. 60 and 50 Ma interpreted to reflect low-angle subduction. During this period of time, the Swauk Basin began to subside inboard of the paleo-trench in Washington, and the Siletzia oceanic plateau began to develop along the Farallon plate-Kula plate or Farallon plate-Resurrection plate spreading center. Farther east, peraluminous magmatism occurred in the Omineca belt and Idaho batholith. Accretion of Siletzia and ridge-trench interaction occurred between ca. 53 and 49 Ma, as indicated by: (1) near-trench magmatism from central Vancouver Island to northwestern Washington, (2) disruption and inversion of the Swauk Basin during a short-lived contractional event, (3) voluminous magmatism in the Kamloops-Challis belt accompanied by major E-W extension east of the North Cascades in metamorphic core complexes and supra-detachment basins and grabens, and (4) southwestward migration of magmatism across northeastern Washington. These events suggest that flat-slab subduction from ca. 60 to 52 Ma was followed by slab rollback and breakoff during accretion of Siletzia. A dramatic magmatic flare-up was associated with rollback and breakoff between ca. 49.4 and 45 Ma and included bimodal volcanism near the eastern edge of Siletzia, intrusion of granodioritic to granitic plutons in the crystal-line core of the North Cascades, and extensive dike swarms in the North Cascades. Transtension during and shortly before the flare-up led to >300 km of total offset on dextral strike-slip faults, formation of the Chumstick strike-slip basin, and subhorizontal ductile stretching and rapid exhumation of rocks metamorphosed to 8-10 kbar in the North Cascades crystalline core. By ca. 45 Ma, the Farallon-Kula (or Resurrection)-
ISSN:1553-040X
1553-040X
DOI:10.1130/GES02629.1