Neogene faulting, basin development, and relief generation in the southern Klamath Mountains (USA)

Development and evaluation of models for tectonic evolution in the Cascadia forearc require understanding of along-strike heterogeneity of strain distribution, uplift, and upper-plate characteristics. Here, we investigated the Neogene geologic record of the Klamath Mountains province in southernmost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geosphere (Boulder, Colo.) Colo.), 2024-02, Vol.20 (1), p.237-266
Hauptverfasser: Michalak, Melanie J., Cashman, Susan M., Langenheim, Victoria E., Team, Taylor C., Christensen, Dana J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development and evaluation of models for tectonic evolution in the Cascadia forearc require understanding of along-strike heterogeneity of strain distribution, uplift, and upper-plate characteristics. Here, we investigated the Neogene geologic record of the Klamath Mountains province in southernmost Cascadia and obtained apatite (U-Th)/He (AHe) thermochronology of Mesozoic plutons, Neogene graben sediment thickness, detrital zircon records from Neogene grabens, gravity and magnetic data, and kinematic analysis of faults. We documented three aspects of Neogene tectonics: early Miocene and younger rock exhumation, development of topographic relief sufficient to isolate Neogene graben-filling sediments from sources outside of the Klamath Mountains, and initiation of mid-Miocene or younger right-lateral and reverse faulting. Key findings are: (1) 10 new apatite AHe mean cooling ages from the Canyon Creek and Granite Peak plutons in the Trinity Alps range from 24.7 ± 2.1 Ma to 15.7 ± 2.1 Ma. Inverse thermal modeling of these data and published apatite fission-track ages indicate the most rapid rock cooling between ca. 25 and 15 Ma. One new AHe mean cooling age (26.7 ± 3.2 Ma) from the Ironside Mountain batholith 40 km west of the Trinity Alps, combined with previously published AHe ages, suggests geographically widespread latest Oligocene to Miocene cooling in the southern Klamath Mountains province. (2) AHe ages of 39.4 ± 5.1 Ma on the downthrown side and 22.7 ± 3.0 Ma on the upthrown side of the Browns Meadow fault suggest early Miocene to younger fault activity. (3) U-Pb detrital zircon ages (n = 862) and Lu-Hf isotope geochemistry from Miocene Weaverville Formation sediments in the Weaverville, Lowden Ranch, Hayfork, and Hyampom grabens south and southwest of the Trinity Alps can be traced to entirely Klamath Mountains sources; they suggest the south-central Klamath Mountains had, by the middle Miocene, sufficient relief to isolate these grabens from more distal sediment sources. (4) Two Miocene detrital zircon U-Pb ages of 10.6 ± 0.4 Ma and 16.7 ± 0.2 Ma from the Lowden Ranch graben show that the maximum depositional age of the upper Weaverville Formation here is younger than previously recognized. (5) A prominent steep-sided negative gravity anomaly associated with the Hayfork graben shows that both the north and south margins are fault-controlled, and inversion of gravity data suggests basin fill is between 1 km and 1.9 km thick. Abrupt elevation changes
ISSN:1553-040X
1553-040X
DOI:10.1130/GES02612.1