Geodynamic implications of crustal lithologies from the southeast Mariana forearc

The deep submergence research vehicle Shinkai 6500, diving on the Challenger segment of the Mariana forearc, encountered a superstructure of nascent arc crust atop a younger mantle with entrained fragments of metamorphosed crust. A plutonic block from this crust collected at 4900 m depth has a cryst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geosphere (Boulder, Colo.) Colo.), 2018-02, Vol.14 (1), p.1-22
Hauptverfasser: Reagan, Mark K, Heywood, Luan, Goff, Kathleen, Michibayashi, Katsuyoshi, Foster, C. Thomas, Jicha, Brian, Lapen, Thomas J, McClelland, William C, Ohara, Yasuhiko, Righter, Minako, Scott, Sean, Sims, Kenneth W. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deep submergence research vehicle Shinkai 6500, diving on the Challenger segment of the Mariana forearc, encountered a superstructure of nascent arc crust atop a younger mantle with entrained fragments of metamorphosed crust. A plutonic block from this crust collected at 4900 m depth has a crystallization age of 46.1 Ma and mixed boninitic-arc tholeiitic geochemical signatures. A hornblende garnetite and two epidote amphibolites were retrieved from depths between 5938 m and 6277 m in an area dominated by peridotite. The garnetite appears to represent a crystal cumulate after melting of deep arc crust, whereas the amphibolites are compositionally similar to enriched mid-ocean ridge basalt (MORB). The initial isotopic compositions of these crustal fragments are akin to those of Eocene to Cretaceous terranes along the periphery of the Philippine plate. The garnetite achieved pressures of 1.2 GPa or higher and temperatures above 850 °C and thus could represent a fragment of the delaminated root of one of these terranes. This sample has coeval Sm-Nd, Lu-Hf, and 40Ar-39Ar ages indicating rapid ascent and cooling at 25 Ma, perhaps in association with rifting of the Kyushu-Palau arc. Peak P-T conditions were lower for the amphibolites, and their presence on the ocean floor near the garnetite might have resulted from mass wasting or normal faulting. The presence of relatively fusible crustal blocks in the circulating mantle could have contributed to the isotopic similarity of Mariana arc and backarc lavas with Indian Ocean MORB.
ISSN:1553-040X
1553-040X
DOI:10.1130/GES01536.1