Thermomechanical modeling of the Altiplano-Puna deformation anomaly; multiparameter insights into magma mush reorganization
A 150-km-wide ground deformation anomaly in the Altiplano-Puna volcanic complex (APVC) of the Central Andes, with uplift centered on Uturuncu volcano and peripheral subsidence, alludes to complex subsurface stress changes. In particular, the role of a large, geophysically anomalous and partially mol...
Gespeichert in:
Veröffentlicht in: | Geosphere (Boulder, Colo.) Colo.), 2017-05, Vol.13 (4), p.1042-1065 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 150-km-wide ground deformation anomaly in the Altiplano-Puna volcanic complex (APVC) of the Central Andes, with uplift centered on Uturuncu volcano and peripheral subsidence, alludes to complex subsurface stress changes. In particular, the role of a large, geophysically anomalous and partially molten reservoir (the Altiplano-Puna magma body, APMB), located ∼ 20 km beneath the deforming surface, is still poorly understood. To explain the observed spatiotemporal ground deformation pattern, we integrate geophysical and petrological data and develop a numerical model that accounts for a mechanically heterogeneous and viscoelastic crust. Best-fit models imply subsurface stress changes due to the episodic reorganization of an interconnected vertically extended mid-crustal plumbing system composed of the APMB and a domed bulge and column structure. Measured gravity-height gradient data point toward low-density fluid migration as the dominant process behind these stress changes. We calculate a mean annual flux of ∼ 2 × 107 m3 of water-rich andesitic melt and/or magmatic water from the APMB into the bulge and column structure accompanied by modest pressure changes of 100 yr) residual deformation at Uturuncu. Episodic mush reorganization may be a ubiquitous characteristic of the magmatic evolution of the APVC. |
---|---|
ISSN: | 1553-040X 1553-040X |
DOI: | 10.1130/GES01420.1 |