Sensitive and selective phenol sensing in denitrifying Aromatoleum aromaticum EbN1 T

Aromatic compounds are globally abundant organic molecules with a multitude of natural and anthropogenic sources, underpinning the relevance of their biodegradation. EbN1 is a well-studied environmental betaproteobacterium specialized on the anaerobic degradation of aromatic compounds. The here stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology spectrum 2023-12, Vol.11 (6), p.e0210023
Hauptverfasser: Buschen, Ramona, Lambertus, Pia, Scheve, Sabine, Horst, Simon, Song, Fei, Wöhlbrand, Lars, Neidhardt, John, Winklhofer, Michael, Wagner, Tristan, Rabus, Ralf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aromatic compounds are globally abundant organic molecules with a multitude of natural and anthropogenic sources, underpinning the relevance of their biodegradation. EbN1 is a well-studied environmental betaproteobacterium specialized on the anaerobic degradation of aromatic compounds. The here studied responsiveness toward phenol in conjunction with the apparent high ligand selectivity (non-promiscuity) of its PheR sensor and those of the related -cresol (PcrS) and -ethylphenol (EtpR) sensors are in accord with the substrate-specificity and biochemical distinctiveness of the associated degradation pathways. Furthermore, the present findings advance our general understanding of the substrate-specific regulation of the strain's remarkable degradation network and of the concentration thresholds below which phenolic compounds become essentially undetectable and as a consequence should escape substantial biodegradation. Furthermore, the findings may inspire biomimetic sensor designs for detecting and quantifying phenolic contaminants in wastewater or environments.
ISSN:2165-0497
2165-0497
DOI:10.1128/spectrum.02100-23