Potential Risk of Spreading Resistance Genes within Extracellular-DNA-Dependent Biofilms of Streptococcus mutans in Response to Cell Envelope Stress Induced by Sub-MICs of Bacitracin

Antibiotics are used to treat or prevent some types of bacterial infection. The inappropriate use of antibiotics unnecessarily promotes antibiotic resistance and increases resistant bacteria, and controlling these bacteria is difficult. While the emergence of drug-resistant bacteria is a serious pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2020-08, Vol.86 (16), p.1, Article 00770
Hauptverfasser: Nagasawa, Ryo, Sato, Tsutomu, Nomura, Nobuhiko, Nakamura, Tomoyo, Senpuku, Hidenobu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibiotics are used to treat or prevent some types of bacterial infection. The inappropriate use of antibiotics unnecessarily promotes antibiotic resistance and increases resistant bacteria, and controlling these bacteria is difficult. While the emergence of drug-resistant bacteria is a serious problem, the behavior of drug-resistant bacteria is not fully understood. In this study, we investigated the behavior of Streptococcus mutans, a major etiological agent of dental caries that is resistant to bacitracin, which is a cell wall-targeting antibiotic, and focused on biofilm formation in the presence of bacitracin. S. mutans UA159 most strongly induced extracellular DNA (eDNA)-dependent biofilm formation in the presence of bacitracin at 1/8x MIC. The Delta mbrC and Delta mbrD mutant strains, which lack bacitracin resistance, also formed biofilms in the presence of bacitracin at 1/2x MIC. This difference between the wild type and the mutants was caused by the induction of atIA expression in the mid-log phase. We also revealed that certain rgp genes involved in the synthesis of rhamnose-glucose polysaccharide related to cell wall synthesis were downregulated by bacitracin. In addition, glucosyltransferase-I was also involved in eDNA-dependent biofilm formation. The biofilm led to increased transformation efficiencies and promoted horizontal gene transfer. Biofilms were also induced by ampicillin and vancomycin, antibiotics targeting cell wall synthesis, suggesting that cell envelope stress triggers biofilm formation. Therefore, the expression of the atIA and rgp genes is regulated by S. mutans, which forms eDNA-dependent biofilms, promoting horizontal gene transfer in response to cell envelope stress induced by sub-MICs of antibiotics. IMPORTANCE Antibiotics have been reported to induce biofilm formation in many bacteria at subinhibitory concentrations. Accordingly, it is conceivable that the MIC against drug-sensitive bacteria may promote biofilm formation of resistant bacteria. Since drug-resistant bacteria have spread, it is important to understand the behavior of resistant bacteria. Streptococcus mutans is bacitracin resistant, and the 1/8x MIC of bacitracin, which is a cell wall-targeted antibiotic, induced eDNA-dependent biofilm formation. The Delta mbrC and Delta mbrD strains, which are not resistant to bacitracin, also formed biofilms in the presence of bacitracin at 1 /2 X MIC, and biofilms of both the wild type and mutants promoted horizontal gene
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.00770-20