Imaging of pure spin-valley diffusion current in WS 2 -WSe 2 heterostructures

Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-05, Vol.360 (6391), p.893-896
Hauptverfasser: Jin, Chenhao, Kim, Jonghwan, Utama, M Iqbal Bakti, Regan, Emma C, Kleemann, Hans, Cai, Hui, Shen, Yuxia, Shinner, Matthew James, Sengupta, Arjun, Watanabe, Kenji, Taniguchi, Takashi, Tongay, Sefaattin, Zettl, Alex, Wang, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS )-tungsten diselenide (WSe ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field-free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aao3503