Single Photon-Induced Symmetry Breaking of H 2 Dissociation

H 2 , the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? We found that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2007-02, Vol.315 (5812), p.629-633
Hauptverfasser: Martín, F., Fernández, J., Havermeier, T., Foucar, L., Weber, Th, Kreidi, K., Schöffler, M., Schmidt, L., Jahnke, T., Jagutzki, O., Czasch, A., Benis, E. P., Osipov, T., Landers, A. L., Belkacem, A., Prior, M. H., Schmidt-Böcking, H., Cocke, C. L., Dörner, R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:H 2 , the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? We found that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the emission of a photoelectron with subsequent dissociation of the remaining H + 2 fragment shows no symmetry with respect to the ionic H + and neutral H atomic fragments. This lack of symmetry results from the entanglement between symmetric and antisymmetric H + 2 states that is caused by autoionization. The mechanisms behind this symmetry breaking are general for all molecules.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1136598