Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development
Increased dietary fat consumption is associated with colon cancer development. The exact mechanism by which fat induces colon cancer is not clear, however, increased bile acid excretion in response to high-fat diet may promote colon carcinogenesis. The farnesoid X receptor (FXR) is a member of the n...
Gespeichert in:
Veröffentlicht in: | The Journal of pharmacology and experimental therapeutics 2009-02, Vol.328 (2), p.469-477 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increased dietary fat consumption is associated with colon cancer development. The exact mechanism by which fat induces colon
cancer is not clear, however, increased bile acid excretion in response to high-fat diet may promote colon carcinogenesis.
The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, and bile acids are endogenous ligands of FXR.
FXR is highly expressed in the intestine and liver where FXR is essential for maintaining bile acid homeostasis. The role
of FXR in intestine cancer development is not known. The current study evaluated the effects of FXR deficiency in mice on
intestinal cell proliferation and cancer development. The results showed that FXR deficiency resulted in increased colon cell
proliferation, which was accompanied by an up-regulation in the expression of genes involved in cell cycle progression and
inflammation, including cyclin D1 and interleukin-6. Most importantly, FXR deficiency led to an increase in the size of small
intestine adenocarcinomas in adenomatous polyposis coli mutant mice. Furthermore, after treatment with a colon carcinogen,
azoxymethane, FXR deficiency increased the adenocarcinoma multiplicity and size in colon and rectum of C57BL/6 mice. Loss
of FXR function also increased the intestinal lymphoid nodule numbers in the intestine. Taken together, the current study
is the first to show that FXR deficiency promotes cell proliferation, inflammation, and tumorigenesis in the intestine, suggesting
that activation of FXR by nonbile acid ligands may protect against intestinal carcinogenesis. |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.108.145409 |