Detached-Eddy simulations of rocket plume noise at lift-off
The three-dimensional turbulent flow and acoustic field of a supersonic jet impinging on a solid plate at different inclination angles is studied computationally using the general-purpose CFD code ANSYS Fluent. A pressure-based coupled solver formulation with the second-order weighted central-upwind...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2014-10, Vol.136 (4_Supplement), p.2168-2168 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The three-dimensional turbulent flow and acoustic field of a supersonic jet impinging on a solid plate at different inclination angles is studied computationally using the general-purpose CFD code ANSYS Fluent. A pressure-based coupled solver formulation with the second-order weighted central-upwind spatial discretization is applied. Hot jet thermal condition is considered. Acoustic radiation of impingement tones is simulated using a transient time-domain formulation. The effects of turbulence in steady state are modeled by the SST k- turbulence model. The Wall-Modeled Large-Eddy Simulation (WMLES) model is applied to compute transient solutions. The near-wall mesh on the impingement plate is fine enough to resolve the viscosity-affected near-wall region all the way to the laminar sublayer. Inclination angle of the impingement plate is parameterized in the model for automatic re-generation of the mesh and results. The transient solution reproduces the mechanism of impingement tone generation by the interaction of large-scale vortical structures with the impingement plate. The acoustic near field is directly resolved by the Computational Aeroacoustics (CAA) to accurately propagate impingement tone waves to near-field microphone locations. Results show the effect of the inclination angle on sound level pressure spectra and overall sound pressure level directivities. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.4899846 |