Fast model for target scattering in a homogeneous waveguide

A fast ray model for propagation in a homogenous water column tracks time-of-flight wavepackets from sources to targets and then to receivers. The model uses image sources and receivers to account for interactions with the water column boundaries, where the layer of water lies between an upper semi-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2012-09, Vol.132 (3_Supplement), p.1909-1909
Hauptverfasser: Kargl, Steven G., Williams, Kevin L., Espana, Aubrey L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fast ray model for propagation in a homogenous water column tracks time-of-flight wavepackets from sources to targets and then to receivers. The model uses image sources and receivers to account for interactions with the water column boundaries, where the layer of water lies between an upper semi-infinite halfspace of air and a lower semi-infinite halfspace of a homogenous sediment. The sediment can be either an attenuating fluid with a frequency-independent loss parameter or a fluid consistent with an effective density fluid model (i.e., a fluid limit to Biot's model for a fluid-saturated poroelastic medium). The target scattering process is computed via convolution of a free-field scattering form function with the spectrum of an incident acoustic field at the target location. A simulated or measured scattered free-field pressure from a complicate target can be reduced to a scattering form function, and this form function then can be used within model via interpolation. The fast ray-based model permits the generation of sets of realistic pings suitable for synthetic aperture sonar processing for proud and partially buried target. Results from simulations are compared to measurements where the targets are an inert unexploded ordnance and aluminum cylinder. [Research supported by SERDP and ONR.]
ISSN:0001-4966
1520-8524
DOI:10.1121/1.4755005