Modification of Skudrzyk’s mean-value theory parameters to predict fluid-loaded plate vibration

The geometric-mean drive-point admittance (or “mobility”) of a complex structure is given by the admittance of the corresponding infinite structure (i.e., the “characteristic admittance,” Yc). The frequency response of an infinite plate, for example, coincides with the geometric-mean response of a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1997-07, Vol.102 (1), p.342-347
Hauptverfasser: Torres, Rendell R., Sparrow, Victor W., Stuart, Alan D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The geometric-mean drive-point admittance (or “mobility”) of a complex structure is given by the admittance of the corresponding infinite structure (i.e., the “characteristic admittance,” Yc). The frequency response of an infinite plate, for example, coincides with the geometric-mean response of a finite one. Eugen Skudrzyk’s “mean-value theorem” was derived and experimentally verified without consideration of fluid loading. This paper shows that Skudrzyk’s method can be applied to fluid-loaded plates well below the coincidence frequency. Skudrzyk’s general mathematical expression allows simplified modifications that account for fluid loading and result in an approximate fluid-loaded characteristic admittance that differs only by a small multiplicative factor (
ISSN:0001-4966
1520-8524
DOI:10.1121/1.419757