Crucial 3-D viscous hydrodynamic contributions to the theoretical modeling of the cochlear response

This study uses a 3-D representation of the cochlear fluid to extend the results of a recent paper [Sisto, Belardinelli, and Moleti (2021b). J. Acoust. Soc. Am. 150, 4283–4296] in which two hydrodynamic effects, pressure focusing and viscous damping of the BM motion, both associated with the sharp i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2023-01, Vol.153 (1), p.77-86
Hauptverfasser: Sisto, Renata, Belardinelli, Daniele, Altoè, Alessandro, Shera, Christopher A., Moleti, Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study uses a 3-D representation of the cochlear fluid to extend the results of a recent paper [Sisto, Belardinelli, and Moleti (2021b). J. Acoust. Soc. Am. 150, 4283–4296] in which two hydrodynamic effects, pressure focusing and viscous damping of the BM motion, both associated with the sharp increase in the wavenumber in the peak region, were analyzed for a 2-D fluid, coupled to a standard 1-D transmission-line WKB approach to cochlear modeling. The propagation equation is obtained from a 3-D fluid volume conservation equation, yielding the focusing effect, and the effect of viscosity is represented as a correction to the local 1-D admittance. In particular, pressure focusing amplifies the BM response without modifying the peak admittance, and viscous damping determines the position of the response peak counteracting focusing, as sharp gradients of the velocity field develop. The full 3-D WKB formalism is necessary to represent satisfactorily the behavior of the fluid velocity field near the BM-fluid interface, strictly related to viscous losses. As in finite element models, a thin layer of fluid is effectively attached to the BM due to viscosity, and the viscous force associated with the vertical gradient of the fluid vertical velocity acts on the BM through this layer.
ISSN:0001-4966
1520-8524
DOI:10.1121/10.0016809