Machine learning for acoustic source localization in room and ocean acoustics

Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-10, Vol.150 (4), p.A112-A112
Hauptverfasser: Gerstoft, Peter, Niu, Haiqiang, Bianco, Michael J., Ozanich, Emma, Wu, Yifan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A112
container_issue 4
container_start_page A112
container_title The Journal of the Acoustical Society of America
container_volume 150
creator Gerstoft, Peter
Niu, Haiqiang
Bianco, Michael J.
Ozanich, Emma
Wu, Yifan
description Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.
doi_str_mv 10.1121/10.0007803
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0007803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c713-9839eecb0768be49ccb0b8c1b939113734de24d1fbfe95774a21592070c88293</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqWw8Ak8gwI-24ntEVVQkFoxwB45FweMUhvZ6QCfHpdWjEzv_vx0T_cIuQR2A8DhtihjTGkmjsgMas4qXXN5TGZlCpU0TXNKznL-KG2thZmR9driuw-Ojs6m4MMbHWKiFuM2Tx5pjtuEZRnRjv7bTj4G6gNNMW6oDT2N6Gz4w_M5ORnsmN3FQefk5eH-dfFYrZ6XT4u7VYUKRGWKs3PYMdXozkmDpew0QmeEARBKyN5x2cPQDc7USknLoTacKYZacyPm5Gp_FVPMObmh_Ux-Y9NXC6zdxbDTQwwFvt7DGf30-8B_9A8Y5Vy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning for acoustic source localization in room and ocean acoustics</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><source>Acoustical Society of America Digital Library</source><creator>Gerstoft, Peter ; Niu, Haiqiang ; Bianco, Michael J. ; Ozanich, Emma ; Wu, Yifan</creator><creatorcontrib>Gerstoft, Peter ; Niu, Haiqiang ; Bianco, Michael J. ; Ozanich, Emma ; Wu, Yifan</creatorcontrib><description>Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0007803</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A112-A112</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0007803$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Gerstoft, Peter</creatorcontrib><creatorcontrib>Niu, Haiqiang</creatorcontrib><creatorcontrib>Bianco, Michael J.</creatorcontrib><creatorcontrib>Ozanich, Emma</creatorcontrib><creatorcontrib>Wu, Yifan</creatorcontrib><title>Machine learning for acoustic source localization in room and ocean acoustics</title><title>The Journal of the Acoustical Society of America</title><description>Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqWw8Ak8gwI-24ntEVVQkFoxwB45FweMUhvZ6QCfHpdWjEzv_vx0T_cIuQR2A8DhtihjTGkmjsgMas4qXXN5TGZlCpU0TXNKznL-KG2thZmR9driuw-Ojs6m4MMbHWKiFuM2Tx5pjtuEZRnRjv7bTj4G6gNNMW6oDT2N6Gz4w_M5ORnsmN3FQefk5eH-dfFYrZ6XT4u7VYUKRGWKs3PYMdXozkmDpew0QmeEARBKyN5x2cPQDc7USknLoTacKYZacyPm5Gp_FVPMObmh_Ux-Y9NXC6zdxbDTQwwFvt7DGf30-8B_9A8Y5Vy4</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Gerstoft, Peter</creator><creator>Niu, Haiqiang</creator><creator>Bianco, Michael J.</creator><creator>Ozanich, Emma</creator><creator>Wu, Yifan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>Machine learning for acoustic source localization in room and ocean acoustics</title><author>Gerstoft, Peter ; Niu, Haiqiang ; Bianco, Michael J. ; Ozanich, Emma ; Wu, Yifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c713-9839eecb0768be49ccb0b8c1b939113734de24d1fbfe95774a21592070c88293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerstoft, Peter</creatorcontrib><creatorcontrib>Niu, Haiqiang</creatorcontrib><creatorcontrib>Bianco, Michael J.</creatorcontrib><creatorcontrib>Ozanich, Emma</creatorcontrib><creatorcontrib>Wu, Yifan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerstoft, Peter</au><au>Niu, Haiqiang</au><au>Bianco, Michael J.</au><au>Ozanich, Emma</au><au>Wu, Yifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for acoustic source localization in room and ocean acoustics</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-10</date><risdate>2021</risdate><volume>150</volume><issue>4</issue><spage>A112</spage><epage>A112</epage><pages>A112-A112</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.</abstract><doi>10.1121/10.0007803</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A112-A112
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_10_0007803
source AIP Journals; Alma/SFX Local Collection; Acoustical Society of America Digital Library
title Machine learning for acoustic source localization in room and ocean acoustics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20acoustic%20source%20localization%20in%20room%20and%20ocean%20acoustics&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gerstoft,%20Peter&rft.date=2021-10&rft.volume=150&rft.issue=4&rft.spage=A112&rft.epage=A112&rft.pages=A112-A112&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0007803&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true