Machine learning for acoustic source localization in room and ocean acoustics
Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-10, Vol.150 (4), p.A112-A112 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A112 |
---|---|
container_issue | 4 |
container_start_page | A112 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 150 |
creator | Gerstoft, Peter Niu, Haiqiang Bianco, Michael J. Ozanich, Emma Wu, Yifan |
description | Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath. |
doi_str_mv | 10.1121/10.0007803 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0007803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c713-9839eecb0768be49ccb0b8c1b939113734de24d1fbfe95774a21592070c88293</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqWw8Ak8gwI-24ntEVVQkFoxwB45FweMUhvZ6QCfHpdWjEzv_vx0T_cIuQR2A8DhtihjTGkmjsgMas4qXXN5TGZlCpU0TXNKznL-KG2thZmR9driuw-Ojs6m4MMbHWKiFuM2Tx5pjtuEZRnRjv7bTj4G6gNNMW6oDT2N6Gz4w_M5ORnsmN3FQefk5eH-dfFYrZ6XT4u7VYUKRGWKs3PYMdXozkmDpew0QmeEARBKyN5x2cPQDc7USknLoTacKYZacyPm5Gp_FVPMObmh_Ux-Y9NXC6zdxbDTQwwFvt7DGf30-8B_9A8Y5Vy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning for acoustic source localization in room and ocean acoustics</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><source>Acoustical Society of America Digital Library</source><creator>Gerstoft, Peter ; Niu, Haiqiang ; Bianco, Michael J. ; Ozanich, Emma ; Wu, Yifan</creator><creatorcontrib>Gerstoft, Peter ; Niu, Haiqiang ; Bianco, Michael J. ; Ozanich, Emma ; Wu, Yifan</creatorcontrib><description>Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0007803</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A112-A112</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0007803$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Gerstoft, Peter</creatorcontrib><creatorcontrib>Niu, Haiqiang</creatorcontrib><creatorcontrib>Bianco, Michael J.</creatorcontrib><creatorcontrib>Ozanich, Emma</creatorcontrib><creatorcontrib>Wu, Yifan</creatorcontrib><title>Machine learning for acoustic source localization in room and ocean acoustics</title><title>The Journal of the Acoustical Society of America</title><description>Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqWw8Ak8gwI-24ntEVVQkFoxwB45FweMUhvZ6QCfHpdWjEzv_vx0T_cIuQR2A8DhtihjTGkmjsgMas4qXXN5TGZlCpU0TXNKznL-KG2thZmR9driuw-Ojs6m4MMbHWKiFuM2Tx5pjtuEZRnRjv7bTj4G6gNNMW6oDT2N6Gz4w_M5ORnsmN3FQefk5eH-dfFYrZ6XT4u7VYUKRGWKs3PYMdXozkmDpew0QmeEARBKyN5x2cPQDc7USknLoTacKYZacyPm5Gp_FVPMObmh_Ux-Y9NXC6zdxbDTQwwFvt7DGf30-8B_9A8Y5Vy4</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Gerstoft, Peter</creator><creator>Niu, Haiqiang</creator><creator>Bianco, Michael J.</creator><creator>Ozanich, Emma</creator><creator>Wu, Yifan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>Machine learning for acoustic source localization in room and ocean acoustics</title><author>Gerstoft, Peter ; Niu, Haiqiang ; Bianco, Michael J. ; Ozanich, Emma ; Wu, Yifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c713-9839eecb0768be49ccb0b8c1b939113734de24d1fbfe95774a21592070c88293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerstoft, Peter</creatorcontrib><creatorcontrib>Niu, Haiqiang</creatorcontrib><creatorcontrib>Bianco, Michael J.</creatorcontrib><creatorcontrib>Ozanich, Emma</creatorcontrib><creatorcontrib>Wu, Yifan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerstoft, Peter</au><au>Niu, Haiqiang</au><au>Bianco, Michael J.</au><au>Ozanich, Emma</au><au>Wu, Yifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for acoustic source localization in room and ocean acoustics</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-10</date><risdate>2021</risdate><volume>150</volume><issue>4</issue><spage>A112</spage><epage>A112</epage><pages>A112-A112</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.</abstract><doi>10.1121/10.0007803</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A112-A112 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_crossref_primary_10_1121_10_0007803 |
source | AIP Journals; Alma/SFX Local Collection; Acoustical Society of America Digital Library |
title | Machine learning for acoustic source localization in room and ocean acoustics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20acoustic%20source%20localization%20in%20room%20and%20ocean%20acoustics&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gerstoft,%20Peter&rft.date=2021-10&rft.volume=150&rft.issue=4&rft.spage=A112&rft.epage=A112&rft.pages=A112-A112&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0007803&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |