Machine learning for acoustic source localization in room and ocean acoustics

Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-10, Vol.150 (4), p.A112-A112
Hauptverfasser: Gerstoft, Peter, Niu, Haiqiang, Bianco, Michael J., Ozanich, Emma, Wu, Yifan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite decades of development, acoustic source localization has been challenged by mislocations. Instead, we learn the localizations directly from data using machine learning. After a mapping has been learned we test that the mapping generalizes well on test data. We demonstrate the approach in an ocean waveguide as a classification and a regression neural network, in a room acoustic setting we demonstrate how a neural network can alleviate multipath.
ISSN:0001-4966
1520-8524
DOI:10.1121/10.0007803