Cavitation inception pressure and bubble cloud formation due to the backscattering of high-intensity focused ultrasound from a laser-induced bubble

Cavitation bubble cloud formation due to the backscattering of high-intensity focused ultrasound (HIFU) from a laser-induced bubble in various water temperatures and dissolved oxygen (DO) has been investigated. A laser-induced bubble generated near the geometrical focus of HIFU is utilized to yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2020-02, Vol.147 (2), p.1207-1217
Hauptverfasser: Horiba, Taisei, Ogasawara, Toshiyuki, Takahira, Hiroyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cavitation bubble cloud formation due to the backscattering of high-intensity focused ultrasound (HIFU) from a laser-induced bubble in various water temperatures and dissolved oxygen (DO) has been investigated. A laser-induced bubble generated near the geometrical focus of HIFU is utilized to yield intense negative pressure by the backscattering. Optical observation with a high-speed video camera and pressure measurement with a fiber-optic probe hydrophone are conducted simultaneously to understand the forming process of a bubble cloud and corresponding pressure field by the backscattering. Optical observation shows that a bubble cloud grows stepwise forming multiple layers composed of tiny cavitation bubbles, and the cavitation inception position is consistent with the local minimum pressure position simulated with the ghost fluid method. The bubble cloud grows larger in the opposite direction of HIFU propagation, and the absolute value of the cavitation inception pressure decreases with an increase in water temperature. The linear correlation between cavitation inception pressure and water temperature agrees with that given by Vlaisavljevich, Xu, Maxwell, Mancia, Zhang, Lin, Duryea, Sukovich, Hall, Johnsen, and Cain [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1064–1077 (2016)]. However DO has minor dependence on the cavitation inception pressure when DO is degassed sufficiently. Furthermore, the gas nucleus size that might exist in the experiment has been estimated by using bubble dynamics.
ISSN:0001-4966
1520-8524
DOI:10.1121/10.0000649