A Simple Experimental Setup for Teaching Additive Colors with Arduino
The result of additive colors is always fascinating to young students. When we teach this topic to 14- to 16-year-old students, they do not usually notice we use maximum light quantities of red (R), green (G), and blue (B) to obtain yellow, magenta, and cyan colors in order to build the well-known a...
Gespeichert in:
Veröffentlicht in: | The Physics teacher 2016-04, Vol.54 (4), p.244-245 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The result of additive colors is always fascinating to young students. When we teach this topic to 14- to 16-year-old students, they do not usually notice we use maximum light quantities of red (R), green (G), and blue (B) to obtain yellow, magenta, and cyan colors in order to build the well-known additive color diagram of Fig. 1. But how about using different light intensities for R, G, and B? What colors do we get? This problem of color mixing has been intensively discussed for decades by several authors, as pointed out by Ruiz's “Color Addition and Subtraction Apps” work and the references included therein. An early LED demonstrator for additive color mixing dates back to 1985, and apps to illustrate color mixing are available online. In this work, we describe an experimental setup making use of a microcontroller device: the Arduino Uno. This setup is designed as a game in order to improve students' understanding of color mixing. |
---|---|
ISSN: | 0031-921X 1943-4928 |
DOI: | 10.1119/1.4944370 |