Physical pendulum model: Fractional differential equation and memory effects

A detailed analysis of pendular motion is presented. Inertial effects, self-oscillation, and memory, together with non-constant moment of inertia, hysteresis, and negative damping are shown to be required for the comprehensive description of the free pendulum oscillatory regime. The effects of very...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2020-11, Vol.88 (11), p.962-975
Hauptverfasser: N. Gonçalves, L., Fernandes, J., Ferraz, A., G. Silva, A., Sebastião, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A detailed analysis of pendular motion is presented. Inertial effects, self-oscillation, and memory, together with non-constant moment of inertia, hysteresis, and negative damping are shown to be required for the comprehensive description of the free pendulum oscillatory regime. The effects of very high initial amplitudes, friction in the roller bearing axle, drag, and pendulum geometry are also analyzed and discussed. A model consisting of a fractional differential equation fits and explains high resolution and long-time experimental data gathered from standard action-camera videos.
ISSN:0002-9505
1943-2909
DOI:10.1119/10.0001660