Effects of AlxGa1−xN interlayer for GaN epilayer grown on Si substrate by metal-organic chemical-vapor deposition

GaN film grown on Si substrate using multilayer AlN/AlxGa1−xN buffer is studied by the low-pressure metal-organic chemical-vapor deposition method. The AlxGa1−xN films with Al composition varying from 1 to 0.66 were used to accommodate the stress induced between GaN and the Si substrate during GaN g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2010-05, Vol.28 (3), p.473-477
Hauptverfasser: Lin, Kung-Liang, Chang, Edward-Yi, Hsiao, Yu-Lin, Huang, Wei-Ching, Luong, Tien-Tung, Wong, Yuen-Yee, Li, Tingkai, Tweet, Doug, Chiang, Chen-Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GaN film grown on Si substrate using multilayer AlN/AlxGa1−xN buffer is studied by the low-pressure metal-organic chemical-vapor deposition method. The AlxGa1−xN films with Al composition varying from 1 to 0.66 were used to accommodate the stress induced between GaN and the Si substrate during GaN growth. The correlation of the Al composition in the AlxGa1−xN films with respect to the stress induced in the GaN film grown was studied using high-resolution x-ray diffraction, including symmetrical and asymmetrical ω/2θ scans and reciprocal space maps. It is found that with proper design of the Al composition in the AlxGa1−xN buffer layer, crack-free GaN film can be successfully grown on 6 in. Si (111) substrates using multilayer AlN and AlxGa1−xN buffer layers.
ISSN:2166-2746
2166-2754
DOI:10.1116/1.3385672