Surface characterization of ion-enhanced implanted photoresist removal

We characterize the chemical constitutents of high dose implanted deep ultraviolet photoresist before and after dual-mode oxygen plasma processing, where a remote rf-plasma source is operated simultaneously with rf bias. Raman spectroscopy indicates that the organic composition of the crust comprise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2006-03, Vol.24 (2), p.657-663
Hauptverfasser: Kawaguchi, Mark N., Papanu, James S., Su, Bo, Castle, Matthew, Al-Bayati, Amir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue 2
container_start_page 657
container_title Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena
container_volume 24
creator Kawaguchi, Mark N.
Papanu, James S.
Su, Bo
Castle, Matthew
Al-Bayati, Amir
description We characterize the chemical constitutents of high dose implanted deep ultraviolet photoresist before and after dual-mode oxygen plasma processing, where a remote rf-plasma source is operated simultaneously with rf bias. Raman spectroscopy indicates that the organic composition of the crust comprises a mixture of s p 2 graphite and s p 3 diamondlike carbon structures. High dose ion implantation reduces the hydrogen content by about 50 at. % as measured by hydrogen forward scattering and explains the reduced optical emission signal intensity observed during crust removal. The crust thicknesses extracted from the secondary-ion-mass spectroscopy profile correspond well to prior scanning electron microscopy characterization [Kawaguchi et al. , J. Vac. Sci. Technol. B (submitted)] and support the existence of a transitional layer between the hardened crust and the underlying photoresist. Angle-resolved x-ray photoelectron spectroscopy analysis of arsenic implanted photoresist shows that dual-mode plasma processing causes substantial oxidation deep into the bulk. This result contrasts with downstream plasma processing, which proceeds by a near-surface mechanism. In addition, surface arsenic levels increase by an order of magnitude, which suggests that ion bombardment does not significantly sputter the dopant.
doi_str_mv 10.1116/1.2178367
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_2178367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_2178367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1b9d86052393f4704c3107f07be9ec17914b7d815b95a8fcad2249e81d9573</originalsourceid><addsrcrecordid>eNqNkE1LxDAYhIMouK4e_Ae9KnTN2zRNchFkcVVYENR7SPNBK92mJHFBf71dt6AXxdPM4WGYGYTOAS8AoLqCRQGMk4odoBnQAuecVuxw9JhBDrggx-gkxleMcUUJmaHV81twSttMNyoonWxoP1RqfZ95l42S275RvbYmazdDp_o0uqHxyQcb25iyYDd-q7pTdORUF-3ZpHP0tLp9Wd7n68e7h-XNOtclpSmHWhheYVoQQVzJcKnJWMxhVlthNTABZc0MB1oLqrjTyhRFKSwHIygjc3SxD9XBxxisk0NoNyq8S8Byt16CnNaP7PWejbpNX4N-h6cL5M8LxoDLfwf8BW99-AblYBz5BChCfo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface characterization of ion-enhanced implanted photoresist removal</title><source>AIP Journals Complete</source><creator>Kawaguchi, Mark N. ; Papanu, James S. ; Su, Bo ; Castle, Matthew ; Al-Bayati, Amir</creator><creatorcontrib>Kawaguchi, Mark N. ; Papanu, James S. ; Su, Bo ; Castle, Matthew ; Al-Bayati, Amir</creatorcontrib><description>We characterize the chemical constitutents of high dose implanted deep ultraviolet photoresist before and after dual-mode oxygen plasma processing, where a remote rf-plasma source is operated simultaneously with rf bias. Raman spectroscopy indicates that the organic composition of the crust comprises a mixture of s p 2 graphite and s p 3 diamondlike carbon structures. High dose ion implantation reduces the hydrogen content by about 50 at. % as measured by hydrogen forward scattering and explains the reduced optical emission signal intensity observed during crust removal. The crust thicknesses extracted from the secondary-ion-mass spectroscopy profile correspond well to prior scanning electron microscopy characterization [Kawaguchi et al. , J. Vac. Sci. Technol. B (submitted)] and support the existence of a transitional layer between the hardened crust and the underlying photoresist. Angle-resolved x-ray photoelectron spectroscopy analysis of arsenic implanted photoresist shows that dual-mode plasma processing causes substantial oxidation deep into the bulk. This result contrasts with downstream plasma processing, which proceeds by a near-surface mechanism. In addition, surface arsenic levels increase by an order of magnitude, which suggests that ion bombardment does not significantly sputter the dopant.</description><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.2178367</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><publisher>American Vacuum Society</publisher><ispartof>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena, 2006-03, Vol.24 (2), p.657-663</ispartof><rights>American Vacuum Society</rights><rights>2006 American Vacuum Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-1b9d86052393f4704c3107f07be9ec17914b7d815b95a8fcad2249e81d9573</citedby><cites>FETCH-LOGICAL-c455t-1b9d86052393f4704c3107f07be9ec17914b7d815b95a8fcad2249e81d9573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Kawaguchi, Mark N.</creatorcontrib><creatorcontrib>Papanu, James S.</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Castle, Matthew</creatorcontrib><creatorcontrib>Al-Bayati, Amir</creatorcontrib><title>Surface characterization of ion-enhanced implanted photoresist removal</title><title>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena</title><description>We characterize the chemical constitutents of high dose implanted deep ultraviolet photoresist before and after dual-mode oxygen plasma processing, where a remote rf-plasma source is operated simultaneously with rf bias. Raman spectroscopy indicates that the organic composition of the crust comprises a mixture of s p 2 graphite and s p 3 diamondlike carbon structures. High dose ion implantation reduces the hydrogen content by about 50 at. % as measured by hydrogen forward scattering and explains the reduced optical emission signal intensity observed during crust removal. The crust thicknesses extracted from the secondary-ion-mass spectroscopy profile correspond well to prior scanning electron microscopy characterization [Kawaguchi et al. , J. Vac. Sci. Technol. B (submitted)] and support the existence of a transitional layer between the hardened crust and the underlying photoresist. Angle-resolved x-ray photoelectron spectroscopy analysis of arsenic implanted photoresist shows that dual-mode plasma processing causes substantial oxidation deep into the bulk. This result contrasts with downstream plasma processing, which proceeds by a near-surface mechanism. In addition, surface arsenic levels increase by an order of magnitude, which suggests that ion bombardment does not significantly sputter the dopant.</description><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAYhIMouK4e_Ae9KnTN2zRNchFkcVVYENR7SPNBK92mJHFBf71dt6AXxdPM4WGYGYTOAS8AoLqCRQGMk4odoBnQAuecVuxw9JhBDrggx-gkxleMcUUJmaHV81twSttMNyoonWxoP1RqfZ95l42S275RvbYmazdDp_o0uqHxyQcb25iyYDd-q7pTdORUF-3ZpHP0tLp9Wd7n68e7h-XNOtclpSmHWhheYVoQQVzJcKnJWMxhVlthNTABZc0MB1oLqrjTyhRFKSwHIygjc3SxD9XBxxisk0NoNyq8S8Byt16CnNaP7PWejbpNX4N-h6cL5M8LxoDLfwf8BW99-AblYBz5BChCfo8</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Kawaguchi, Mark N.</creator><creator>Papanu, James S.</creator><creator>Su, Bo</creator><creator>Castle, Matthew</creator><creator>Al-Bayati, Amir</creator><general>American Vacuum Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060301</creationdate><title>Surface characterization of ion-enhanced implanted photoresist removal</title><author>Kawaguchi, Mark N. ; Papanu, James S. ; Su, Bo ; Castle, Matthew ; Al-Bayati, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1b9d86052393f4704c3107f07be9ec17914b7d815b95a8fcad2249e81d9573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawaguchi, Mark N.</creatorcontrib><creatorcontrib>Papanu, James S.</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Castle, Matthew</creatorcontrib><creatorcontrib>Al-Bayati, Amir</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawaguchi, Mark N.</au><au>Papanu, James S.</au><au>Su, Bo</au><au>Castle, Matthew</au><au>Al-Bayati, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface characterization of ion-enhanced implanted photoresist removal</atitle><jtitle>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>24</volume><issue>2</issue><spage>657</spage><epage>663</epage><pages>657-663</pages><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>We characterize the chemical constitutents of high dose implanted deep ultraviolet photoresist before and after dual-mode oxygen plasma processing, where a remote rf-plasma source is operated simultaneously with rf bias. Raman spectroscopy indicates that the organic composition of the crust comprises a mixture of s p 2 graphite and s p 3 diamondlike carbon structures. High dose ion implantation reduces the hydrogen content by about 50 at. % as measured by hydrogen forward scattering and explains the reduced optical emission signal intensity observed during crust removal. The crust thicknesses extracted from the secondary-ion-mass spectroscopy profile correspond well to prior scanning electron microscopy characterization [Kawaguchi et al. , J. Vac. Sci. Technol. B (submitted)] and support the existence of a transitional layer between the hardened crust and the underlying photoresist. Angle-resolved x-ray photoelectron spectroscopy analysis of arsenic implanted photoresist shows that dual-mode plasma processing causes substantial oxidation deep into the bulk. This result contrasts with downstream plasma processing, which proceeds by a near-surface mechanism. In addition, surface arsenic levels increase by an order of magnitude, which suggests that ion bombardment does not significantly sputter the dopant.</abstract><pub>American Vacuum Society</pub><doi>10.1116/1.2178367</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1071-1023
ispartof Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena, 2006-03, Vol.24 (2), p.657-663
issn 1071-1023
1520-8567
language eng
recordid cdi_crossref_primary_10_1116_1_2178367
source AIP Journals Complete
title Surface characterization of ion-enhanced implanted photoresist removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20characterization%20of%20ion-enhanced%20implanted%20photoresist%20removal&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20B,%20Microelectronics%20and%20nanometer%20structures%20processing,%20measurement%20and%20phenomena&rft.au=Kawaguchi,%20Mark%20N.&rft.date=2006-03-01&rft.volume=24&rft.issue=2&rft.spage=657&rft.epage=663&rft.pages=657-663&rft.issn=1071-1023&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.2178367&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_2178367%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true