Dry release of polymer structures with anti-sticking layer
A dry release method using a thin Teflon™ layer for SU-8 multilayered polymeric microstructures is presented. The low surface energy of Teflon makes the adhesion of SU-8 and substrate poor, enabling the SU-8 polymer photoresist to be removed after the devices have been fully processed. The surface e...
Gespeichert in:
Veröffentlicht in: | Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Surfaces, and Films, 2004-05, Vol.22 (3), p.837-841 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A dry release method using a thin Teflon™ layer for SU-8 multilayered polymeric microstructures is presented. The low surface energy of Teflon makes the adhesion of SU-8 and substrate poor, enabling the SU-8 polymer photoresist to be removed after the devices have been fully processed. The surface energy was measured using the open-crack method, and the surface roughness and deformation of the released SU-8 were minimized in our processing. The dry release technique eliminates the diffusion limited problem in wet etching and is suitable to package complex three-dimensional polymer microfluidic devices. One such example, which provided the original impetus to formulate a dry release process, is a multilayered SU-8 structure that encapsulates small quantities of fluid. This device is being developed for a biomedical application, and will be used throughout this article as an example of a complex SU-8 structure that uses the dry release process. |
---|---|
ISSN: | 0734-2101 1520-8559 |
DOI: | 10.1116/1.1724836 |