Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1−x buffer layers
Improved GaAs/AlGaAs quantum well lasers were fabricated with longer lifetimes, higher efficiencies, and lower threshold current densities than previously reported devices on Ge/GeSi relaxed graded buffers on Si substrates. Uncoated broad-area lasers operated continuously at 858 nm with a differenti...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2003-05, Vol.21 (3), p.1064-1069 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improved GaAs/AlGaAs quantum well lasers were fabricated with longer lifetimes, higher efficiencies, and lower threshold current densities than previously reported devices on Ge/GeSi relaxed graded buffers on Si substrates. Uncoated broad-area lasers operated continuously at 858 nm with a differential quantum efficiency of 0.40 and a threshold current density of 269 A/cm2. Similar devices fabricated on GaAs substrates demonstrated nearly identical performance. Operating lifetimes on Si substrates were nearly 4 h, a 1 order of magnitude improvement over previous devices. In addition, strained InGaAs quantum well lasers have been operated continuously at room temperature on Ge/GeSi/Si substrates with a differential quantum efficiency of 0.26 and a threshold current density of 700 A/cm2. Electroluminescence analyses of the failure behavior of both types of devices have suggested that recombination-enhanced defect reactions are limiting laser lifetime on Si substrates. |
---|---|
ISSN: | 1071-1023 1520-8567 |
DOI: | 10.1116/1.1576397 |