Flammability Measurements of Difluoromethane

Difluoromethane (CH2F2, or R-32) is a candidate to replace ozone-depleting chlorofluorocarbon refrigerants. Because CH2F2 is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681 has difficul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2000-02, Vol.122 (1), p.92-98
Hauptverfasser: Grosshandler, W. L, Donnelly, M. K, Womeldorf, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Difluoromethane (CH2F2, or R-32) is a candidate to replace ozone-depleting chlorofluorocarbon refrigerants. Because CH2F2 is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681 has difficulty discerning the flammability boundary for weak fuels such as CH2F2. This article describes an alternative approach to identify the limits of flammability, using a twin, premixed counterflow flame. By using the extinction of an already established flame, the point dividing flammable from nonflammable becomes unambiguous. The limiting extinction mixture changes with stretch rate, so it is convenient to report the flammability limit as the value extrapolated to a zero stretch condition. In the burner, contoured nozzles with outlet diameters of 12 mm are aligned counter to each other and spaced 12 mm apart. The lean flammability limit of CH2F2 in dry air at room temperature was previously reported by the authors to be a mole fraction of 0.14, using the twin counterflow flame method. In the current study, relative humidity was not found to affect the lean limit. Increasing the temperature of the premixed fuel and air to 100°C is shown to extend the flammability limit in the lean direction to 0.13. The rich limit of CH2F2 found using the counterflow method is around 0.27. The uncertainties of the measurements are presented and the results compared to data in the literature. [S0022-1481(00)02501-9]
ISSN:0022-1481
1528-8943
DOI:10.1115/1.521440