A Sliding Mode Control of a Full-Car Electrorheological Suspension System Via Hardware in-the-Loop Simulation
This paper presents a feedback control performance of a full-car suspension system featuring electrorheological (ER) dampers for a passenger vehicle. A cylindrical ER damper is designed and manufactured by incorporating a Bingham model of an ER fluid which is commercially available. After evaluating...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2000-03, Vol.122 (1), p.114-121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a feedback control performance of a full-car suspension system featuring electrorheological (ER) dampers for a passenger vehicle. A cylindrical ER damper is designed and manufactured by incorporating a Bingham model of an ER fluid which is commercially available. After evaluating field-dependent damping characteristics of the ER damper, a full-car suspension system installed with four independent ER dampers is then constructed and its governing equation of motion, which includes vertical, pitch, and roll motions, is derived. A sliding mode controller, which has inherent robustness against system uncertainties, is then formulated by treating the sprung mass as uncertain parameter. For the demonstration of a practical feasibility, control characteristics for vibration suppression of the proposed ER suspension system are evaluated under various road conditions through the hardware-in-the-loop simulation (HILS). [S0022-0434(00)02801-X] |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.482435 |