High Throughflow StreamVane Swirl Distortion Generators: Design and Analysis

In recent years, the StreamVane technology has developed into a mature and streamlined process that can reproduce swirl distortion for ground-test evaluation of fan and compressor performance and durability. A StreamVane device consists of complex turning vanes that accurately output a distorted sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2024-04, Vol.146 (4)
Hauptverfasser: Hayden, Andrew P., Gillespie, John, Hefner, Cole, Untaroiu, Alexandrina, Lowe, K. Todd
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the StreamVane technology has developed into a mature and streamlined process that can reproduce swirl distortion for ground-test evaluation of fan and compressor performance and durability. A StreamVane device consists of complex turning vanes that accurately output a distorted secondary velocity field at a defined distance downstream. To further advance the applications and conditions in which these devices operate, a research effort was developed and completed to investigate methods to increase critical Mach numbers. The effort was split into three separate stages: (1) Perform high fidelity computational fluid dynamics (CFD) to identify peak Mach number locations within twin and quad swirl vane pack designs; (2) conduct thorough literature reviews on relevant high throughflow techniques; and (3) design and implement selected techniques to evaluate improvements using the same high-fidelity CFD methods. It was predicted that employing blade lean within high-speed vane junctions increased critical Mach numbers by 6.6%, while blade sweep resulted in a 3.5% increase. The results and conclusions from this effort are presented throughout this paper with a primary focus on comparing Mach numbers and swirl profiles between vane packs with and without high throughflow designs.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.4063709