A Recursive System Identification With Non-Uniform Temporal Feedback Under Coprime Collaborative Sensing

We present a system identification method based on recursive least-squares (RLS) and coprime collaborative sensing, which can recover system dynamics from non-uniform temporal data. Focusing on systems with fast input sampling and slow output sampling, we use a polynomial transformation to reparamet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASME letters in dynamic systems and control 2023-04, Vol.3 (2)
Hauptverfasser: Ouyang, Jinhua, Chen, Xu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a system identification method based on recursive least-squares (RLS) and coprime collaborative sensing, which can recover system dynamics from non-uniform temporal data. Focusing on systems with fast input sampling and slow output sampling, we use a polynomial transformation to reparameterize the system model and create an auxiliary model that can be identified from the non-uniform data. We show the identifiability of the auxiliary model using a Diophantine equation approach. Numerical examples demonstrate successful system reconstruction and the ability to capture fast system response with limited temporal feedback.
ISSN:2689-6117
2689-6125
DOI:10.1115/1.4063481