Pareto Optimal and Dual-Objective Geometric and Structural Design of an Underwater Kite for Closed-Loop Flight Performance

This paper presents the formulation and results for a control-aware optimization of the combined geometric and structural design of an energy-harvesting underwater kite. Because kite-based energy-harvesting systems, both airborne and underwater, possess strong coupling between closed-loop flight con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2023-01, Vol.145 (1)
Hauptverfasser: Naik, Kartik, Beknalkar, Sumedh, Reed, James, Mazzoleni, Andre, Fathy, Hosam, Vermillion, Chris
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the formulation and results for a control-aware optimization of the combined geometric and structural design of an energy-harvesting underwater kite. Because kite-based energy-harvesting systems, both airborne and underwater, possess strong coupling between closed-loop flight control, geometric design, and structural design, consideration of all three facets of the design within a single codesign framework is highly desirable. However, while prior literature has addressed one or two attributes of the design at a time, this work constitutes the first comprehensive effort aimed at addressing all three. In particular, focusing on the goals of power maximization and mass minimization, we present a codesign formulation that fuses a geometric optimization tool, structural optimization tool, and closed-loop flight efficiency map. The resulting integrated codesign tool is used to address two mathematical optimization formulations that exhibit subtle differences: a Pareto optimal formulation and a dual-objective formulation that focuses on a weighted power-to-mass ratio as the techno-economic metric of merit. Based on the resulting geometric and structural designs, using a mediumfidelity closed-loop simulation tool, the proposed formulation is shown to achieve more than three times the powerto-mass ratio of a previously published, unoptimized benchmark design.
ISSN:0022-0434
1528-9028
DOI:10.1115/1.4055978