A Walking Claw for Tethered Object Retrieval
Mobility and manipulation are often considered separately, with independent degrees-of-freedom (DOF) for each. However, here we show that using the legs for both walking and grasping increases the versatility of both tasks. Our robot has four DOF: drive and lift for left and right pairs of legs. The...
Gespeichert in:
Veröffentlicht in: | Journal of mechanisms and robotics 2023-10, Vol.15 (5) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mobility and manipulation are often considered separately, with independent degrees-of-freedom (DOF) for each. However, here we show that using the legs for both walking and grasping increases the versatility of both tasks. Our robot has four DOF: drive and lift for left and right pairs of legs. The legs use a reduced actuation Klann mechanism. The lift DOF rotates the entire trajectory of the legs, which enables gait modulation, climbing, and grasping. This demonstrates the feasibility of a novel operational concept: a robot that can approach, climb onto, and securely grasp an object that can then be lifted via a load-bearing tether. Specifically, we show the kinematics to enable small robots to climb onto rectangular objects up to 67% robot height and grasp objects between 43% and 72% of the robot’s length. With these kinematics, a robot can be scaled for specific terrains and object sizes, with potential application in construction, search and rescue, and object retrieval. |
---|---|
ISSN: | 1942-4302 1942-4310 |
DOI: | 10.1115/1.4055812 |