Investigation of a High-Pressure Turbine Stage in a High-Speed Rotating Transient Test Facility for Rotor Tip Study and a Parametric Study for Improved Heat Transfer Calculation

The first part of the paper presents commissioning of a single-stage high-pressure (HP) turbine employed in a series of extensive experiments to study the aerodynamics and heat transfer on the rotor surface and casing liner. The Oxford Turbine Research Facility (OTRF), a high-speed rotating transien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2022-12, Vol.144 (12)
Hauptverfasser: Singh, Deepanshu, Beard, Paul F., Cardwell, David, Chana, Kam S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first part of the paper presents commissioning of a single-stage high-pressure (HP) turbine employed in a series of extensive experiments to study the aerodynamics and heat transfer on the rotor surface and casing liner. The Oxford Turbine Research Facility (OTRF), a high-speed rotating transient test facility has the capability to take unsteady aerodynamic and heat transfer measurements at engine representative conditions with a variety of inlet temperature profiles including radial distortion and swirl. A temperature profile survey was conducted at the inlet of the HP nozzle guide vane (NGV). Static and total pressure and temperature measurements have been taken at various locations on the rig including NGV surface, inlet and exit, and rotor exit to establish rig operating conditions. Detailed description of mass flow rate measurements along with calculation of heat loss factor in the rig is presented. The second part of the paper presents a parametric study performed to improve heat transfer measurement calculations from high-frequency response thin-film gauges. The effect of parameters like material properties and thickness of substrate on heat flux has been studied. A detailed uncertainty analysis for heat flux is also presented. A thermal model calibrated with analytical solutions has been developed to optimize thin-film gauge configurations and to study side-conduction effects.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.4055683